An Alternative Low-Cost Process for Deposition of MCrAIY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications

Y. Zhang and B. L. Bates *Tennessee Technological University*

2011 University Turbine Systems Research Workshop Columbus, OH October 25-27, 2011

Coating Development Need for IGCC (Integrated Gasification Combined Cycle)

 One of materials needs for advancement of IGCC power plants is to develop low-cost and effective manufacturing processes for application of new TBC/bond coat architectures with enhanced performance and durability in syngas/hydrogen environments.

Bond Coat Choices

- Bond coat choices
 - Diffusion aluminide
 - MCrAIY overlay (M = Ni, Co or a mixture of Ni & Co)
 - More flexibility with regard to composition
 - Lower DBTT

Hot corrosion resistance

(Eskner, M., PhD. Thesis, 2004)

 Depending on the bond coat choice and fabrication process the TBC failure mechanisms can be quite different

Processes for Bond Coat Fabrication

- Current fabrication processes
 - Low-pressure plasma spray (LPPS)
 - Air plasma spray (APS) & high-velocity oxy-fuel (HVOF)
- Limitations of thermal spray processes
 - Line-of-sight, requiring complex robotic manipulation for complete coverage
 - Oxide content can be high in APS and HVOF coatings
 High porosity level in APS
- Alternative coating processes for bond coat fabrication
 - Electrolytic codeposition
 - Electrophoresis
 - Autocatalytic electroless deposition

Why Electro-codeposited MCrAIY Coatings?

Electrolytic codeposition ("composite electroplating"):

Fine powders dispersed in an electroplating solution codeposit with the metal onto the cathode to form a multiphase coating.

- Low cost (capital investment, energy consumption, powder waste)
- Non-line-of-sight
- Ability of producing homogeneous and dense coatings

Extensive studies have been conducted on Ni-Al based coatings via electrolytic codeposition

 Ni-AI based coatings with AI or Al₂O₃ particles (Susan et al., Thin Solid Films, 1997; Susan & Barmak, Oxid. Met.2002; Liu & Chen, Corros. Sci., 2007)

Kirkendall Porosity in the Ni-Al Coating due to Different Intrinsic Diffusivities between Ni and Al

• After heat treatment, a coating with a mixture of γ (Ni) + γ' (Ni₃AI) was formed with significant Kirkendall porosity.

(Susan et al., Metall. Mater. Trans. A, 2001)

As-deposited Ni-Al coating

After heat treatment (850°C/10h)

 As a result of high porosity, the NiAl-based coatings showed poor oxidation performance.

Very Limited Research on MCrAIY Coatings

 Codeposition of CrAIY powder and a metal matrix of Ni, Co, or Ni-Co, followed by a post-plating heat treatment

(Foster et al., Trans. Inst. Met. Finish, 1985, Honey et al., J. Vac. Sci. Technol., 1986)

- A dense MCrAIY coating of ~125µm thick was reported
- The process was later patented by Praxair, known as *Tribomet*, and has been applied as the abrasive tip coating on first stage turbine blades.
- Lack of systematic studies
- No evaluation in syngas/hydrogen turbine environments

Electrolytic codeposition is a more complex process than conventional electroplating

- It is believed that five consecutive steps are engaged during the electrolytic codeposition process:
 - **1.** Formation of ionic clouds on the particles
 - **2.** Convection towards the cathode
 - **3.** Diffusion through a hydrodynamic boundary layer
 - 4. Diffusion through a concentration boundary layer and finally
 - 5. Adsorption at the cathode where the particles are entrapped within the metal deposit

Synergistic Effects of Codeposition Parameters

- Codeposition parameters
 - Type of electrolyte
 - Current density
 - рН
 - Temperature
 - Agitation
 - Particle composition/size/volume
 - Cathode position (plating configuration)
 - Post-plating heat treatment
- Lack of systematic studies, a knowledge base needs to be established

Electro-codeposited MCrAIY Coatings: Critical Issues

- Sulfur Impurities, Y Reservoir, & Reactive Element Codoping
 - Traditional electrolyte used to deposit Ni/Co matrix involves either sulfate- or sulfamate-based solution.

ONERA (France): an electroless process using a Sfree solution (pure nickel electroless bath and CrAIYTa powder) (Mercier et al., Surf. Coat. Technol., 2006)

- Y/S ratio in the coating
- RE co-doping

Critical Issues (Cont'd)

- Surface Roughness
 - Ra of ~10 μ m for APS TBC top coat
- Coating Performance Assessment
 - As an abrasive tip coating: in-depth evaluations have been reported with regard to its thermal expansion behavior.
 - For syngas/hydrogen turbines: The levels of water vapor are considerably higher than in natural gas.

Project Objectives

- Develop and optimize MCrAIY bond coats for syngas/hydrogen turbine applications using the low-cost electrolytic codeposition process
- Improve coating oxidation performance by reducing the sulfur impurity levels and by employing reactive element co-doping
- Evaluate the oxidation behavior of the new bond coat in water vapor environments
- Understand the failure mechanism of the new TBC/bond coat architecture

Key Research Components

#1: Selection of Substrate Alloys More Relevant to IGCC Applications CMSX-486 (a revised version of CMSX-4)

#2: Development & Optimization of Electro-codeposited Coatings

- Electrolyte selection for Ni-/Co-matrix deposition
- Optimization of particle composition & volume
- Control of other codeposition parameters
- Microstructural evolution during post-plating heat treatment

#3: Microstructural Characterization & Property Measurement

- Microstructure
- Surface roughness & hardness measurement

#4: Evaluation of Coating Performance & Failure Mechanism

- Oxidation in water vapor
- Understanding of failure mechanism
- Potential technology transfer

Substrate Alloys Relevant to IGCC Applications

- Successful coating development involves consideration of the substrate composition
 - Generally negligible during deposition, however in service interdiffusion can modify the composition and microstructure

Alloy	Composition (wt.%)									
	Cr	Со	w	Мо	Re	Та	AI	Ti	Hf	Other
PWA 1484	5	10	6	1.9	3	-	5.6	-	0.1	8.7 Nb
René N5	7	8	5	2	3	7	6.2	-	0.2	200 ppm Y
CMSX-4	6.5	10	6	0.6	3	6	5.6	1.0	0.1	<u></u>
CMSX-486	5	9.3	8.6	0.7	3	4.5	5.7	0.7	1.2	0.015 B, 50 ppm Zr

• CMSX-486:

- Similar to CMSX-4 in composition
- More adapted to large castings
- Good stability at temperatures between 982 and 1093°C (1800~2000°F)

 Less expensive Ni-based alloys may be used in the initial coating development stages

Sulfur-free Ni plating solution will be explored

- In addition to conventional Watts bath, S-free fluoborate electrolyte will be studied.
- It is typically used for heavy nickel applications & electroforming.

Constituent (g/L)	Watts	Sulfamate	High Chloride	All Chloride	Fluoborate
Nickel Sulfate (NiSO ₄ ·6H ₂ O)	180-300	—	240	—	—
Nickel Sulfamate Ni(SO ₃ NH ₂) ₂ .4H ₂ O	—	300	—	—	—
Nickel Chloride (NiCl ₂ .6H ₂ O)	45	15	90	240	—
Nickel Fluoborate [Ni(BF ₄) ₂]	—	—	—	—	220
Boric Acid (H ₃ BO ₃)	30-40	30	30-40	30	30
pH Range	4.0-5.0	3.5-4.5	2.0-2.5	0.9-1.1	3.0-4.5
Temperature (°C)	25-65	25-65	40-70	40-65	25-65
Current Density (A/dm ²)	1-6	2-15	1-6	5-11	4-11

Cr/Al Ratio and Y Level in the Coating

- Cr/Al ratio and Y level in electro-codeposited MCrAIY coatings are controlled by the CrAIY powder composition.
- Easily adaptable to a RE Co-doping additions

(Foster et al., US Patent 4,789,441, 1988)

Designation	Plating Solution	Particle Composition (at.%)		
Coating #1	Co-Ni	Cr-53Al-0.7Y		
Coating #2	Со	Cr-63Al-0.7Y		
Coating #3	Со	Cr-53Al-0.7Y		

Optimum Y Reservoir and RE Co-doping

- Even though Y (~0.5 wt.%) is commonly incorporated into the MCrAIY coatings, a ratio of Y/S > 1 is needed to effectively getter excess sulfur.
- The optimum Y reservoir needs to be defined to maximize its beneficial effect on extending TBC lifetimes.

18

 Possible RE co-doping to further enhance oxidation performance

(Pint et al., Mater. High Temp., 2003)

A DoE approach will be used to investigate and optimize codeposition parameters

- A two-level full factorial experimental design uses all possible factor levels in determining its model.
- 6 Factors
 - Current density
 - рН
 - Temperature
 - Particle loading
 - Particle size
 - Agitation
- 3 Responses
 - Cathode efficiency
 - Coating uniformity
 - Particle incorporation

Response surface plot of cathode efficiency vs. current density and temperature (*Seritan et al., Chem. Eng. Res. Des., 2011*)

Evaluation of Microstructural Evolution during Post-Plating Diffusion Heat Treatment

- Where interdiffusion occurs between the CrAIY particles and the Ni/Co matrix to achieve the final MCrAIY coating consisting of γ and β phases.
- The post-plating heat treatment has a significant influence on the TGO growth rate.
- Higher temperatures under high vacuum promote oxidation of reactive elements and hence increase TGO growth.
- Compatible with superalloy's heat treatment

⁽ASM Handbook, Vol.3, 1992)

The classsic MCrAIY coating: 18-20%Cr, 8-12%Al (wt%)

Coating Characterization

- To provide optimum adherence for an APS TBC top coat, a surface roughness of ~10µm Ra is desirable.
- Surface roughness will be examined using profilometry in combination with SEM cross-sectional image analysis.

2 mm

 The effects of codeposition parameters and surface treatment will be investigated.

Coating Characterization

Grit blasted surface of R80 substrate

Surface converted to a 3D measurable texture

 Currently we are evaluating 3D imaging software that will provide surface and area roughness estimates.

22

Evaluation of Coating Performance & Failure Mechanisms

- Oxidation testing in water vapor environments
 - Also noting, that the levels of sulfur and particulates can be higher in the syngas/hydrogen combustion than with natural gas-fired turbines

(Alvin et al., The 22nd Annual Conference on Fossil Energy Materials, 2008)

	Syngas Turbine 2010	Hydrogen Turbine 2015	Oxy-Fuel Turbine 2010	Oxy-Fuel Turbine 2015
Combustor Exhaust Temp, °C (°F)	~1480 (~2700)	~1480 (~2700)		
Turbine Inlet Temp, °C (°F)	~1370 (~2500)	~1425 (~2600)	~620 (~1150)	~760 (~1400) (HP) ~1760 (~3200) (IP)
Turbine Exhaust Temp, °C (°F)	~595 (~1100)	~595 (~1100)		
Turbine Inlet Pressure, psig	~265	~300	~450	~1500 (HP) ~625 (IP)
Combustor Exhaust Composition	9.3% CO ₂ 8.5% H ₂ O 72.8% N ₂ 0.8% Ar 8.6% O ₂	1.4% CO ₂ 17.3% H₂O 72.2% N ₂ 0.9% Ar 8.2% O ₂	17% CO ₂ 82% H ₂ O 1.1% N ₂ 1.0% Ar 0.1% O ₂	25-10% CO ₂ 75-90% H ₂ O 1.7% N ₂ , Ar, O ₂

Understanding of TBC failure mechanism

Industrial Collaboration

- GE Global Research & GE Energy
 - Dr. Voramon Dheeradhada and Dr. Warren Nelson
 - Offer guidance on coating development
 - The TBC lifetime will be evaluated and compared to that of the TBCs with the state-of-the-art thermal spray MCrAIY bond coat.
 - Selected coatings with promising oxidation performance will be further assessed by GE.
 - Coatings with superior performance will be recommended for commercial applications.

Preliminary Results

- Experimental setup
 - Substrate: Ni-based
 superalloys such as René
 80
 - Sample preparation:
 - Ground to 600 grit
 - grit blasted with #220 grit
 - Anode: Ni plate

Electroplating of Pure Ni Coating

- Watts Ni plating solution
- Current density: 3.1 A/dm²
- Temperature: 50°C
- pH: 4.0

Constituent	(g/L)		
Nickel Sulfate	310		
Nickel Chloride	50		
Boric Acid	40		

High-energy ball milling was used to produce Cr-Al particles of 10-15 μm

- Cr-Al-based particles with ~40 at.% Al
 - Cr-Al alloy made with an arc melter
 - High-energy ball milling in Ar

7 min

12 min

• Particle size was reduced from ~50 μ m after 7 min to 10-15 μ m after 12 min.

Initial Coating Microstructure

- An adherent Ni coating with Cr-AI particles was deposited.
- The particle incorporation was low, ~15 vol.%.

Current density: 3 A/dm² Particle load: ~30 g/L

 NIS Elements imaging software was used to calculate the area fraction of the particles.

Improvement in Particle Incorporation

• The particle incorporation can be controlled by modifying the current density, particle loading, stirring, etc.

~15%

~28%

Current density: 3 A/dm² Particle load: ~30 g/L

Revised parameters

Electro-codeposition Configuration

- During initial experiments the specimen was positioned vertically
 - Positioning may limit volume of deposited particles
- Two horizontal arrangements
 - Particle incorporation is limited on the downward-facing surface
 - The barrel unit: a semi-permeable rotating barrel that holds the specimen and powder
 - The electrolyte can diffuse through the membrane wall, while the powder is maintained in suspension in the barrel
 - Uses significantly less powder, allowing a higher concentration if needed

(Honey et al., J. Vac. Sci. Technol., 1986)

Summary

- The proposed research is to develop and optimize MCrAIY bond coats for syngas/hydrogen turbine applications using a low-cost electrolytic codeposition process.
- The coating performance will be improved by reducing the impurity levels in the coating and by employing reactive element co-doping.
- The oxidation resistance of the new bond coat will be assessed in the water vapor environments.
- The failure mechanism of the new TBC/bond coat architecture will be studied to provide a knowledge base for further increase of TBC lifetimes.

Acknowledgments

- U. S. Department of Energy National Energy Technology Laboratory, University Turbine Systems Research, Award No. DE-FE0007332; Project Manager: Dr. Patcharin Burke
- Tennessee Tech University, Center for Manufacturing Research

